MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		ge 2)	Mark Scheme	Syllabus	Paper	•
				GCE AS/A LEVEL – May/June 2014	9702	22	
1	(a)	power = energy/time <i>or</i> work done/time force: kg m s⁻² (including from <i>mg</i> in <i>mgh</i> or <i>Fv</i>)				B1	
		or k	ineti	c energy $(\frac{1}{2}mv^2)$: kg (m s ⁻¹) ²		B1	
		(dis	tance	e: m and (time) ⁻¹ : s ⁻¹) and hence power: kg m s ⁻² m s ⁻¹	= kg m ² s ⁻³	B1	[3]
	(b)	A: r corr	n² an rect s	$m^2 s^{-3}$ Id x: m and T: K Substitution into C = (Qx) / tAT or equivalent, or with can C : kg m s ⁻³ K ⁻¹	ncellation	C1 C1 C1 A1	[4]
2	(a)	V=		$(t^2/4) \times t = 7.67 \times 10^{-7} \text{ m}^3$		C1	
				× 10^{-3})/[π (22.1/2 × 10^{-3}) ² × 2.00 × 10^{-3}] I3kg m ⁻³ (allow 2 or more s.f.)		C1 A1	[3]
	(b)	(i)	$\Delta \rho l$	$\rho = \Delta m/m + \Delta t/t + 2\Delta d/d$		C1	
				= 5.21% + 0.50% + 0.905% [or correct fractional u	ncertainties]	C1	
				= 6.6% (6.61%)		A1	[3]
		(ii)	ρ=	$12500 \pm 800 \mathrm{kg}\mathrm{m}^{-3}$		A1	[1]
3	(a)	a body/mass/object continues (at rest or) at constant/uniform velocity unles acted on by a resultant force			ss B1	[1]	
	(b)	(i)		ght <u>vertically</u> down nal/reaction/contact (force) perpendicular/normal <u>to t</u>	he slope	B1 B1	[2]
		(ii)	1.	acceleration = gradient or $(v - u)/t$ or $\Delta v/t$ = $(6.0 - 0.8)/(2.0 - 0.0) = 2.6 \text{ m s}^{-2}$		C1 M1	[2]
			2.	F = ma = 65 × 2.6 = 169 N (allow to 2 or 3 s.f.)		A1	[1]
			3.	weight component seen: mg sin θ (218 N) 218 – R = 169 R = 49 N (require 2 s.f.)		C1 C1 A1	[3]

	Page 3			Mark Scheme	Syllabus	Paper	r
				GCE AS/A LEVEL – May/June 2014	9702	22	
4	(a)	GPE: energy of a <u>mass</u> due to its position in a <u>gravitational field</u> KE: energy (a mass has) due to its motion/speed/velocity				B1 B1	[2]
	(b)	(i)	1.	$KE = \frac{1}{2} mv^2$		C1	
				$=\frac{1}{2}\times0.4\times(30)^2$		C1	
				= 180 J		A1	[3]
			2.	$s = 0 + \frac{1}{2} \times 9.81 \times (2.16)^2$ or $s = (30 \sin 45^\circ)^2 / (2$	× 9.81)	C1	
				= 22.88 (22.9)m = 22.94 (22.9)m		A1	[2]
			3.	GPE = mgh = 0.4 × 9.81 × 22.88 = 89.8 (90) J		C1 A1	[2]
		(ii)	1.	KE = initial KE – GPE = 180 – 90 = 90 J		A1	[1]
			2.	(horizontal) velocity is not zero/(object) is still moving in terms of conservation of energy	/answer explained	d B1	[1]
5	(a)	(Yc	oung	modulus/E =) stress/strain		B1	[1]
	(b)	(i)		ess = F/A			
			or or	$= F / (\pi d^{2}/4) = F / (\pi d^{2})$		M1	
							101
			rati	o = 4 (or 4:1)		A1	[2]
		(ii)		s the same for both wires (as same material) [e.g. E_P = μ ain = stress/ <i>E</i>	E _Q]	M1	
				o = 4 (or 4:1) [<i>must be same as (i)</i>]		A1	[2]
6	(a)			e no lost volts/energy lost in the battery are no lost volts/energy lost in the internal resistance		B1	[1]
	(b)	the current/ <i>I</i> decreases (as <i>R</i> increases) p.d. decreases (as <i>R</i> increases)					
		or					
				allel resistance (of X and <i>R</i>) increases oss parallel resistors increases, so p.d. (across Y) decr	eases	M1 A1	[2]

-		
ŀ	'N	11

Page 4		e 4 Mark Scheme Sy		Syllabus	Paper	
	i ago i		GCE AS/A LEVEL – May/June 2014	9702	22	
(c)	(i)	(i) current = 2.4 (A) p.d. across AB = 24 − 2.4 × 6 = 9.6 V				
		or				
			resistance = 10Ω (= $24V/2.4A$) allel resistance = 4Ω), p.d. = $24 \times (4/10)$ = 9.6 V		C1 M1	[2]
	(ii)		B) = $9.6/2.4 = 4.0 \Omega$ + $1/X = 1/4$ [must correctly substitute for R] 12Ω		C1 C1 A1	
		or				
		<i>I</i> _X =	9.6/6.0 = 1.6 (A) 2.4 - 1.6 = 0.8 (A) 9.6/0.8) = 12Ω		(C1) (C1) (A1)	[3]
	(iii)	powe	$er = VI \text{ or } EI \text{ or } V^2/R \text{ or } E^2/R \text{ or } I^2R$		C1	
			= 24×2.4 or $(24)^2 / 10$ or $(2.4)^2 \times 10$ = 57.6 W (allow 2 or more s.f.)		A1	[2]
(d)	(d) power decreases				MO	
			instant or power = $24 \times \text{current}$, and current decreases constant or power = 24^2 /resistance, and resistance in	creases	A1	[1]
7 (a)	<u>wav</u>	<u>ves</u> fro	om the double slit are coherent/constant phase differe	nce	B1	
	waves (from each slit) overlap/superpose/meet (not interfere)				B1	
	maximum/bright fringe where path difference is $n\lambda$ or phase difference is $n360^{\circ}/2\pi n$ rad					
	or minimum/dark fringe where path difference is $(n + \frac{1}{2})\lambda$					
			difference is $(2n + 1) 180^{\circ}/(2n + 1)\pi$ rad		B1	[3]
(b)	v = λ =	fλ (3 × 1	10 ⁸) / 670 × 10 ¹² = 448 (or 450) (nm)		C1 M1	[2]
(c)		= 12 / 9 = Dλ/1	9 w) = $(2.8 \times 450 \times 10^{-9}) / (12 / 9 \times 10^{-3})$ [allow nm, m = 9.5×10^{-4} m [9.4×10^{-4} m using λ = 448 nm]	m]	C1 C1 A1	[3]
(d)			has) larger/higher/longer wavelength (must be comp irther apart/larger separation	arison)	M1 A1	[2]